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Abstract

In this paper, we propose a new computational model for
visual saliency derived from the information maximization
principle. The model is inspired by a few well acknowledged
biological facts. To compute the saliency spots of an image,
the model first extracts a number of sub-band feature maps
using learned sparse codes. It adopts a fully-connected
graph representation for each feature map, and runs ran-
dom walks on the graphs to simulate the signal/information
transmission among the interconnected neurons. We pro-
pose a new visual saliency measure called Site Entropy Rate
(SER) to compute the average information transmitted from
a node (neuron) to all the others during the random walk on
the graphs/network. This saliency definition also explains
the center-surround mechanism from computation aspect.
We further extend our model to spatial-temporal domain so
as to detect salient spots in videos. To evaluate the pro-
posed model, we do extensive experiments on psychological
stimuli, two well known image data sets, as well as a public
video dataset. The experiments demonstrate encouraging
results that the proposed model achieves the state-of-the-
art performance of saliency detection in both still images
and videos.

1. Introduction

Visual attention plays an important role in human visual
system when perceiving the world. It is able to select the
most valuable visual information from a large amount of
the sensory data to interpret complex scenes in real time
fashion. In the last decades, the psychophysics of visual
attention has been extensively studied (e.g. [21, 23]) and
many computational models of visual attention have been
proposed (e.g. [22, 12]). By exploiting these models, visual
attention has been successfully applied to many computer
vision applications, e.g. interest region detection [17], ob-

ject recognition [19], and scene classification [20].
In this paper, we propose a biology-inspired bottom-up

computational model of attention based on visual saliency,
which is considered as the impetus for selection of fixation
points[12]. Instead of defining visual saliency from the per-
spective of the commonly used center-surround mechanism,
we propose a new saliency measure derived from the prin-
ciple of information maximization. This principle suggests
that the human visual system (HVS) tends to focus on the
most informative points in an image in order to efficiently
analyze the scene[23]. Our computational model assigns
a point a higher saliency value if it is more “informative”.
In addition, our model is constructed based on the follow-
ing mostly agreed biological evidences. (1) With the un-
derstanding of the properties of simple-cells in primary vi-
sual cortex(V1), sparse coding is broadly acknowledged as
an efficient coding strategy for optimal information trans-
fer and metabolic efficiency [8]. (2) Two different spatial
scales of cortical connectivity construct a network by the
recurrent local connection and long-range horizontal con-
nection. In the network, neurons communicate with each
other via synaptic firings to give rise to an emergent be-
havior. [15] (3) A neuron’s activities are driven by the total
synaptic input from its neighbors [14].

By referring to the above three key evidences, we pro-
pose a framework (shown in Fig. 1) in order to simulate
the computational function of visual saliency in our brain,
rather than the real architecture of the early primate vi-
sual system. Fig. 1 shows the procedure of computing the
saliency map of an image. (1) The system first filters the
input image with a number of sparse coding bases. Each fil-
tering generates a feature map, which is a sub-band image
of the corresponding sparse code. As being found that the
receptive fields of simple-cells in V1 are similar to sparse
codes learned from natural images[16], we learn two sets
of the sparse coding basis functions as the early visual fea-
tures from a large number of natural images in both color
and gray (as shown in Fig. 2). (2) To simulate the cortical
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Figure 1. The proposed framework. An input image is filtered by sparse coding basis functions to obtain the corresponding sub-band
feature maps. A fully-connected graph is constructed for each feature map, and a random walk is run on each graph to compute a SER map
of each channel. Finally, the saliency map is generated by summing over all the SER maps.

neuron connectivity we adopt a fully-connected graph rep-
resentation for the feature maps. The full connectedness is
able to capture the long range relation between two sites in
an image. (3) A random walk is adopted on each sub-band
graph in order to model the signal transmission among the
neurons in the network. As the entropy rate (ER) of the
random walk is the average information of one step move,
we use it to compute the total transmitted information of
all the graph nodes (neurons). By distributing the entropy
rate onto each graph node (neuron), we propose a new term,
Site Entropy Rate (SER), to measure the average informa-
tion from a node to all the others. In this way, we obtain
a SER map for each sub-band graph. It is worth pointing
out that the SER describes the accumulative effects of all
the interactions between a neuron and the other connected
ones, not necessarily the exact total synaptic input from its
neighbors. It is also interesting to note that the SER for-
mulation also explains the center-surround mechanism en-
coded in the computational model. (4) Finally, the saliency
map is computed by summing over all the sub-band SER
maps in a similar fashion to the Feature-Integration Theory
[21]. The higher an integrated SER value at a site, the more
salient the site.

We also extend our model to spatial-temporal domain to
detect salient spots in videos. Based on the biological ev-
idence that neural response attenuates with prolonged ex-
posure to the same stimuli [16], we assume that it is the
novel signal and the change of the signal at a site that make
the site salient. Under this assumption, we compute the
saliency map at time 𝑡 by discounting the effect from the
previous frames so as to simulate the temporal change of
neural response. More specifically, we update each sub-
band feature map by subtracting the temporally weighted

feature responses from the corresponding sub-band feature
map of the previous frames. Then we still run random walks
on the fully-connected graphs of the updated feature maps
to obtain the SER maps and finally the saliency map.

We do extensive experiments on psychological stimuli,
two well known image datasets, as well as a public video
dataset. The experimental results show that our proposed
saliency model achieves the best performance on both still
images and videos.

1.1. Related work

In this section, we briefly review the existing literature
that closely relates to the proposed model.

The approaches with graph representation In order
to simulate attentional shifts and eye movements, Costa et
al. [3] employ random walks on image lattice to compute
the visual saliency. The saliency value at a spot is propor-
tional to the frequency of visit to the spot at the equilibrium
of the random walk. Harel et al. [9] extend [3]’s method
by proposing a better dissimilarity measure to model the
transition probability between two nodes. Gopalakrishnan
et al. [7] adopt the same saliency measure and formulate
the salient region detection as random walks on a fully-
connected graph and a k-regular graph to extract the global
and local image properties respectively. In this paper we
utilize fully-connected graph structure to simulate the cor-
tical neuron connection, and derive a new saliency measure
from the information maximization principle.

The approaches based on information maximization
This kind of methods consider that information is the driv-
ing force behind attentive sampling and use the rarity of fea-
tures to measure visual saliency. Bruce et al. [2] adopt the
self-information of sparse features as a saliency measure.
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Hou et al. [11] assume that “salient features can offer en-
tropy gain”. They introduce the Incremental Coding Length
to allocate different amount of energy to features according
to their rarity. Our model defines the Site Entropy Rate of
the random walk on the graph structure. It measures the av-
erage information transmitted from a node to both its local
and far neighbors so as to simulate the activity level of the
neuron and the saliency degree of its receptive field.

The approaches for the Center-surround mechanism
This group of methods model the center-surround mecha-
nism of primary visual cortical cells. Itti and Koch [12] pro-
pose a biologically-plausible visual saliency model based
on the center-surround contrast mechanism. By arguing that
[12]’s linear model of the similarity measure on color, in-
tensity, and orientation is inconsistent with the properties of
higher level human judgement (which tends to be asymmet-
ric), Gao et al. [6] propose a discriminant center-surround
hypothesis using mutual information. It poses saliency de-
tection as a classification problem, and obtains an optimal
solution from the decision-theoretic perspective. Although
our model is derived on a fully-connected graph from the
point of view of information maximization, the proposed
saliency measure, SER, can be considered as a generalized
center-surround model (to be explained in Section 2.3).

Saliency models for videos Several approaches have
been proposed to measure the saliency on videos. Itti et
al.[13] propose a model of surprising/salient event detec-
tion. They formulate the surprise/saliency as the Kullback-
Leibler divergence between the posterior and prior beliefs
of an observer about the scene. In fact, this model extends
the spatial center-surround contrast to the spatiotemporal
domain. Hou et al.[11] consider the temporal correlation
among video frames as a Laplacian distribution and replace
the feature activity ratio distribution over space with the
cumulative activity ratio distribution over both space and
time in their feature-based model. However, our proposed
method aims to model the biological behavior of neurons in
temporal domain. Specifically, the model simulates attenu-
ation effect when neurons are exposed to the same stimuli
over time.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce the details of the theory and the model.
The experimental results on psychological stimuli, color
and gray images and videos are presented in Section 3. Fi-
nally, we conclude the paper in Section 4.

2. The Model

In this section, we shall first introduce the learning of
the sparse coding basis functions, followed by the model
representation, the new saliency measure (SER), and finally
the computation of saliency maps.

2.1. The sparse coding bases

There are evidences showing that when presented to a
scene, only a small number of early visual neurons out of a
large set will be activated [1]. To simulate this property of
simple cells in the primary visual cortex, the sparse coding
theory is proposed to extract the intrinsic structure of natural
images for efficient coding [16]. The theory assumes that an
image I is a linear superposition of a number of image bases
𝐵𝑘, where 𝑘 indexes for the location, orientation and scale,
etc.

I =
∑
𝑘

𝑎𝑘𝐵𝑘 (1)

𝑎𝑘 is the coefficient of basis 𝐵𝑘, 𝑝(𝑎𝑘) ∝ 𝑒−𝛼∣𝑎𝑘∣ is the
high-order statistics prior to enforce the sparsity. This coef-
ficient can be computed by its corresponding filter function
𝐺𝑘

𝑎𝑘 =
∑
𝑥,𝑦

𝐺𝑘(𝑥, 𝑦)I(𝑥, 𝑦) (2)

where 𝐺𝑘 is the inverse/pseudoinverse of 𝐵𝑘.
In this paper, we adopt Independent Component Analy-

sis (ICA) [10] to learn two sets of sparse coding basis func-
tions from a color image dataset and a gray image dataset
(to be introduced in Section 3). And we use the coefficient
𝑎𝑘 as the early visual feature response 𝑓𝑘(𝑥, 𝑦) of I being
filtered by 𝐺𝑘. The filter responses of 𝐺𝑘 form the 𝑘-th
sub-band feature map 𝐹𝑘.

2.2. The subband graph representation

To simulate the recurrent local and long-range con-
nections between neurons, we construct a fully-connected
graph 𝐺𝑘 = {𝑉𝑘, 𝐸𝑘} on each feature map 𝐹𝑘, where
𝑉𝑘 = {𝑣𝑘1, ..., 𝑣𝑘𝑛} is the set of nodes at image pixels.
𝑣𝑘𝑖 =

(
𝑥𝑖, 𝑦𝑖, 𝑓𝑘(𝑥𝑖, 𝑦𝑖)

)
has two attributes: the location

and the feature response. 𝐸𝑘 = {𝑒𝑘𝑖𝑗 , 𝑖, 𝑗 = 1, ..., 𝑛} is the
set of weighted edges connecting every pair of nodes, where
𝑒𝑘𝑖𝑗 = (𝑖, 𝑗, 𝑤𝑘𝑖𝑗). The weight 𝑤𝑘𝑖𝑗 measures the dissim-
ilarity between node 𝑖 and 𝑗 from two aspects: the feature
dissimilarity denoted by 𝜙𝑘𝑖𝑗 and the spatial distance de-
noted by 𝑑𝑖𝑗 . The weight is simply defined as

𝑤𝑘𝑖𝑗 = 𝜙𝑘𝑖𝑗 ∗ 𝑑𝑖𝑗 (3)

where 𝜙𝑘𝑖𝑗 and 𝑑𝑖𝑗 are defined as

𝜙𝑘𝑖𝑗 = exp {∣𝑓𝑘(𝑥𝑖, 𝑦𝑖)− 𝑓𝑘(𝑥𝑗 , 𝑦𝑗)∣ /𝑀𝑘} (4)

𝑑𝑖,𝑗 = exp {−𝜆

√
(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2

𝐷
} (5)

where 𝑀𝑘 is the largest feature difference, 𝐷 is the larger
dimension (horizontal or vertical) of the image. 𝜆 is a posi-
tive parameter to balance the importance of the two aspects.
𝜆 = 5 in our experiment.
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2.3. The site entropy rate

It is difficult to model the large-scale signal transmission
on the neuronal network when spontaneous synaptic firings
occur simultaneously. Instead, we simulate the information
flow from one neuron to another as a random walk process
from one site to another on the fully-connected graphs of
the sub-band feature maps. We define transition probabil-
ity of the random walk from site 𝑖 to site 𝑗 in terms of the
normalized edge weights between site 𝑖 and 𝑗.

𝑃𝑖𝑗 =
𝑤𝑖𝑗∑
𝑗 𝑤𝑖𝑗

(6)

In this section, the sub-band index 𝑘 is omitted for simplic-
ity.

As we know, random walk is a stochastic process of a
sequence of random variables {𝑋𝑖}. A Markov chain is a
simple case of the random walk process:

𝑃𝑟(𝑋𝑛+1 = 𝑥𝑛+1∣𝑋𝑛 = 𝑥𝑛, ..., 𝑋1 = 𝑥1)

= 𝑃𝑟(𝑋𝑛+1 = 𝑥𝑛+1∣𝑋𝑛 = 𝑥𝑛)
(7)

for all 𝑥1, 𝑥2, ..., 𝑥𝑛+1 ∈ 𝜒, 𝑛 = 1, 2, ...
If the finite-state Markov chain is irreducible and aperi-

odic, the stationary distribution 𝜋 is unique and 𝜋𝑃 = 𝜋.
Here 𝑃 is the transition matrix. For a random walk process,
the element of 𝜋 at node 𝑖 can be simply computed as

𝜋𝑖 =
𝑊𝑖

2𝑊
(8)

where 𝑊𝑖 =
∑

𝑗 𝑤𝑖𝑗 is the total weight of edges emanat-
ing from node 𝑖, and 𝑊 =

∑
𝑖,𝑗:𝑗>𝑖 𝑤𝑖𝑗 is the sum of the

weights of all the edges.
The stationary probability 𝜋𝑖 is generally considered as

the frequency of visit to the node 𝑖 at the equilibrium of the
random walk [3]. In the literature, people directly use the
𝜋𝑖 as the saliency measure at location 𝑖 [3, 9]. However,
we think that the total information sent from one neuron to
another is decided by two terms: the transmission (visit) fre-
quency and the amount of information at each transmission
(visit). Therefore, we need an information theoretic mea-
sure for the information transmission so as to account for
the two factors during the random walk process.

In information theory, the entropy rate 𝐻(𝜒) is defined
to measure the average entropy of a sequence with 𝑛 ran-
dom variables, which is the average information obtained
along with the time as (𝑛 → ∞). It is defined as follows

𝐻(𝜒) = lim
𝑛→∞

1

𝑛
𝐻(𝑋1, 𝑋2, ..., 𝑋𝑛) (9)

when the limit exists. From the theorem introduced in [4],
we can obtain a computable entropy rate of a Markov Chain
as follows.

Let {𝑋𝑖} be a Markov chain with stationary distribution
𝜋 = {𝜋𝑖} and transition matrix 𝑃 = {𝑃𝑖𝑗 : 𝑃 (𝑋𝑛 =
𝑗∣𝑋𝑛−1 = 𝑖)}. Then the entropy rate is equivalent to the
conditional entropy 𝐻(𝑋𝑛∣𝑋𝑛−1)

𝐻(𝜒) = 𝐻(𝑋𝑛∣𝑋𝑛−1) = −
∑
𝑖𝑗

𝜋𝑖𝑃𝑖𝑗 log𝑃𝑖𝑗 (10)

By a simple manipulation of the above equation, we have

𝐻(𝜒) =
∑
𝑖

(𝜋𝑖

∑
𝑗

−𝑃𝑖𝑗 log𝑃𝑖𝑗). (11)

we define a new term, Site Entropy Rate (SER)

SER𝑖 = 𝜋𝑖

∑
𝑗

−𝑃𝑖𝑗 log𝑃𝑖𝑗 (12)

to measure the average information transmitted from node
𝑖 to the other connected ones. The SER can be divided into
two parts: the stationary distribution term 𝜋𝑖 and the en-
tropy term

∑
𝑗 −𝑃𝑖𝑗 log𝑃𝑖𝑗 . The 𝜋𝑖 tells the frequency at

which a random walker visits node 𝑖. It is also the frequency
that node 𝑖 communicates with the other nodes. The entropy
term

∑
𝑗 −𝑃𝑖𝑗 log𝑃𝑖𝑗 measures the uncertainty of node 𝑖

jumping to the other nodes at one step. It is related to the
amount of information transmitted from node 𝑖 to the others
at one step. SER is the product of the two terms. It mea-
sures the average total information transmitted from node
𝑖 to the others in one step. We hope to use this measure
to simulate the activity level of a neuron. Thus, the higher
the SER value, the more active is the neuron, and the more
salient is its corresponding receptive field. Thus we adopt
SER as a visual saliency measure.

Now, let us analyze the SER definition from another per-
spective. Eqn.12 suggests that if a site be salient, (1) the
site should be frequently visited (large 𝜋𝑖), and (2) the en-
tropy term needs to be large too. In our model, the 𝑃𝑖𝑗 is
determined by the edge weight between node 𝑖 and node 𝑗
(Eqn.6). And the edge weight encodes the feature differ-
ence and the spatial distance of the two nodes (Eqn.4&5).
It can be considered as a spatially-weighted feature dissim-
ilarity.

∑
𝑗 −𝑃𝑖𝑗 log𝑃𝑖𝑗 achieves its maximum value if 𝑃𝑖𝑗

is uniform. There are two cases maximizing the entropy:
(1) the center-surround contrast pattern, and (2) the con-
stant or smooth pattern. However, 𝜋𝑖 in these two cases are
quite different: 𝜋 at the center of the center-surround con-
trast region is much larger than it is in the constant/smooth
region. In another word, the visiting frequency enhances
the saliency measure at center-surround contrast regions,
but decreases the saliency value of constant/smooth regions.
Therefore, our model can be considered as an information
theoretic model for the generalized center-surround mecha-
nism.
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2.4. The saliency map

We obtain the SER map for each sub-band feature map.
According to the Feature-Integrated Theory [21], the final
saliency map is the sum of all the SER maps. The saliency
value at pixel 𝑖 is

𝑆𝑖 =
∑
𝑘

𝑆𝐸𝑅𝑘𝑖 (13)

3. Experimental Results
To test the performance of the proposed model, we do

extensive experiments on psychological stimuli, two pub-
lic image datasets and a video dataset. On each dataset
we compare our model with the state-of-the-art approaches
based on commonly-used evaluation criterion.

3.1. Learning the sparse coding bases

We learn two sets of sparse coding basis functions as the
early visual features of both color and gray images. A set
of 192 color sparse basis functions is learned from 120,000
8× 8× 3 image patches randomly extracted from 1500 nat-
ural color images using ICA [10]. Using the same method,
we learn another set of 64 gray image basis functions from
50,000 8 × 8 gray image patches. The basis functions of
color images and gray images are shown in Fig. 2.

As shown in Fig.1, each filtering generates a feature
map, which is a sub-band image of the corresponding sparse
code.

(a) (b)

Figure 2. (a) The 64 components of 192 color sparse bases. (b)
The 64 gray sparse bases.

3.2. Experiments on psychological stimuli

We test our model on several psychological stimuli
which are commonly used to represent the pre-attentive
visual features. These patterns include “line orientation”,
“length”, “size”, “closure”, “curvature”, “density”, “num-
ber”, “intersection”, “terminator” and “color”, etc.

In this experiment, we test our model on five of these
stimuli. As shown in Fig. 3, we compare our results with the
results from Itti et al. [12] by showing the saliency maps and

the saliency heat maps. In the saliency heat maps, the hotter
the color of a spot, the more salient it is. The figure clearly
shows that our model predicts the saliency spots more ac-
curately than [12] in the “number”, “curvature” and “inter-
section” stimuli. It is worth noting, in the “intersection”
stimulus, the reason for the two extra regions we detect (in
red circle) being salient is that the signal spatial density is
different from their surroundings.

color

number

density

curvature

intersection

Figure 3. Comparison results of five psychological stimuli between
our model and Itti et al.’s [12]. The columns from left to right
are: the original stimuli, [12]’s saliency maps and its saliency heat
maps, our saliency maps and saliency heat maps. The highlighted
two salient regions with the red circles in “intersection” is because
that the signal spatial density is different from their surroundings.

3.3. Experiments on still images

The color image dataset The popular color image
dataset collected by Bruce et al. [2] usually serves as the
benchmark dataset for comparing visual saliency detection
results. This dataset consists of a variety of images about
indoor and outdoor scenes. Eye fixations are recorded from
20 subjects on the 120 color images. We evaluate and com-
pare our model with the others using two types of measures
introduced in [2]: (1) In qualitative comparison, we show
our saliency maps and the fixation density maps generated
from the sum of all 2D Gaussians to the human fixations
in Fig. 4, and compare the saliency maps to the other four
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(a) (b)

Figure 4. Results for a qualitative comparison between our model
and human fixations. The first columns in (a) and (b) show the
original images, the second columns are our saliency maps, and
the third columns are the human fixation density maps.

state-of-the-art approaches ([12], [2], [6], [11]) in Fig. 5.
Although the saliency maps from [11] are very similar to
ours, the rank of the salient regions in our saliency map is
more consistent with the fixation density map than that of
[11]’s. (2) In quantitative performance evaluation, we com-
pare the Receiver Operator Characteristic (ROC) curves and
the ROC areas to the methods of [12], [2], [6], [11]. The
ROC curve results are shown in Fig. 6 and the ROC areas
are compared in Table 1. (The larger the ROC area, the
better.) Both the ROC curves and ROC areas are gener-
ated by classifying the locations in a saliency map into fix-
ations and non-fixations with varying quantization thresh-
olds. (Note that for the compared four methods, there are
small differences between the showed results and their re-
ported results. This discrepancy is due to different sampling
densities to obtain quantization thresholds.) It can be seen
that our model achieves the best performance on the dataset.

Table 1. The ROC area comparison on the color image dataset

ROC area
Itti et al. [12] 0.7031
Bruce et al. [2] 0.7522
Gao et al. [6] 0.7644
Hou et al. [11] 0.7808
Our model 0.8049

The gray image dataset We use the gray image
dataset of natural scenes and the corresponding fixation data
collected by Einhäuser et al. [5] to evaluate the performance
of our model, and compare the results to the other five ap-
proaches. This dataset contains 108 gray images and each
image has nine modified versions. Every version is gener-
ated by changing luminance-contrast in five randomly se-
lected circular regions. The fixation data are recorded from
seven human subjects observing 108× 9 gray images. (But
not all subjects complete the eye-tracking experiments for
the nine versions.) We also adopt the ROC area to assess our

Itti et al. [12]

Bruce et al. [2]

Gao et al. [6]

Hou et al. [11]

Our model

Human fixations

Figure 5. Results for a qualitative comparison between our model
and the other four approaches. The rows from the top to the bottom
are: the original images, the saliency maps of Itti et al.’s method
[12], the saliency maps of Bruce et al.’s method [2], the saliency
maps of Gao et al.’s method [6], the saliency maps of Hou et al.’s
method [11], the saliency maps of ours, the human fixation density
maps.

Figure 6. The ROC curves of our model and the other four state-
of-the-art approaches on the color image dataset.

model. We select the images with more than three human
subjects’ fixation data. The evaluation method takes the fix-
ations as detection targets. The ROC area is computed with
the saliency map generated by our model. In Table 2 we
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illustrate the comparison of our quantitative evaluation re-
sults against those of the other five methods ([12], [9], [2],
[6], [11]) Fig. 7 shows these saliency maps and human fix-
ation density maps. It can be seen that our model predicts
human fixations more accurately than the other five meth-
ods.

Table 2. The comparison results on the gray image dataset
ROC area

Harel et al. [9] 0.5028
Gao et al. [6] 0.5203
Itti et al. [12] 0.5241
Hou et al. [11] 0.6094
Bruce et al. [2] 0.6420
Our model 0.6537

From the prediction results in Table 1 and Table 2, we
can see that the ROC areas of color images are much larger
than those of gray images. The images from the color image
dataset generally contain only a few semantic objects. Thus,
the human fixations are relatively consistent. But in the gray
image dataset, there contain few semantic objects but raw
signals. The image entropy is much higher than the color
ones, the human fixations are very diversified. Moreover,
the number of human subjects of this dataset is too small to
accurately estimate the true distribution of human fixation.
This causes the worse performance of our model on the gray
image dataset compared with the color one. But even in this
case, our model still outperforms the other models.

3.4. Experiments on videos

In sensory neuroscience, there is evidence showing that
only the unexpected signal at one stage is transmitted to the
next [18]. Moreover, the electrophysiological studies also
demonstrate that neural response greatly attenuates with re-
peated or prolonged exposure to an initially novel stimu-
lus [16]. By referring to these facts, we assume that it is
the novel signal and the change of the signal at a site that
make the site salient. In another word, if the signal at a site
remains constant, even it is prominent in space, its saliency
value will decrease along time. Under this assumption, we
compute the saliency map at time 𝑡 by discounting the ef-
fect from the previous frames so as to simulate the temporal
change of neural response. More specifically, we update
each sub-band feature map by subtracting the temporally
weighted feature responses from the corresponding sub-
band feature map of the previous 𝑘 frames. Let 𝑓𝑗(𝑥, 𝑦, 𝑡)
denote the 𝑗-th sub-band feature map of frame 𝑡. The atten-
uated feature response at (𝑥, 𝑦, 𝑡) in sub-band 𝑗 is

𝑓
′
𝑗(𝑥, 𝑦, 𝑡) = ∣𝑓𝑗(𝑥, 𝑦, 𝑡)−

𝑘∑
𝜏=1

exp (− 𝜏

𝜎
)𝑓𝑗(𝑥, 𝑦, 𝑡− 𝜏)∣

Itti et al. [12]

Harel et al. [9]

Gao et al. [6]

Hou et al. [11]

Bruce et al. [2]

Our model

Human fixations

Figure 7. Results for a qualitative comparison between our model
and the other five approaches. The rows from the top to the bottom
are: the original images, the saliency maps of Itti et al.’s method
[12], the saliency maps of Harel et al.’s method [9], the saliency
maps of Gao et al.’s method [6], the saliency maps of Hou et al.’s
method [11], the saliency maps of Bruce et al.’s method [2], the
saliency maps of ours and the human fixation density maps.

where 𝜎 controls the attenuating rate, which is set to 1.5 in
our implementation, and 𝑘 = 4 in our experiment.

Then the following steps are similar to those for com-
puting the saliency maps of still images – we run random
walks on the fully-connected graphs of the updated feature
maps to obtain the SER maps, and finally sum up all the
SER maps to get the saliency map of frame 𝑡.

In this experiment, we use a dataset of 50 video clips
and their corresponding eye-tracking data from [13]. The
50 video clips contain outdoor scenes, television broadcast
and video games. The eye-tracking data are recorded from

2374

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 24,2021 at 11:58:29 UTC from IEEE Xplore.  Restrictions apply. 



eight subjects. We adopt the evaluation method proposed
in [13] to assess the performance of our model. To evaluate
a saliency detection model, we first compute the saliency
map of a given video using the model. Then we collect
two sets of locations from the video, the human saccade lo-
cations and random saccade locations. Subsequently, two
histograms of saliency values at the two set of locations can
be obtained respectively. The Kullback-Leibler (KL) diver-
gence between the two histograms is adopted as the model
evaluation criterion. The intuitive idea of this evaluation
method is that an effective model predicts high saliency val-
ues at human saccadic locations. Thus the saliency value
histogram from human saccades locations should be very
different from the histogram from random locations, i.e. the
larger KL divergence, the better the model. In Table 3, we
compare the KL distances1 to the other two methods [13]
and [11] on “beverly03”. The ranking of KL distances
shows that our model achieves the best performance.

Table 3. Performance comparison on videos

Itti et al. [13] Hou et al. [11] Our model
KL distance 0.3403 0.5432 0.6927

4. Conclusion and Future Work

This paper proposes a computational model of visual
saliency, in which the saliency is defined as Site Entropy
Rate (SER) based on the principle of information maximiza-
tion. The experiments demonstrate that the proposed model
achieves the state-of-art performance of saliency detection
in both still images and videos.

As can be seen, in this paper we simply model the tran-
sition probability between two graph nodes by fusing the
dissimilarity of sub-band feature responses and the spatial
distance with pre-set parameter (𝜆). In the future, we will
design a data driven algorithm to learn the transition proba-
bility from human saccade.
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